RC4277

Dual Precision Operational Amplifier

Features

- High DC precision
- Very low VOS - $30 \mu \mathrm{~V}$
- Very low VOS drift $-0.3 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$
- High open-loop gain $-5000 \mathrm{~V} / \mathrm{mV}$
- High CMRR - 120 dB
- High PSRR - 120 db
- Low noise $-0.35 \mu \mathrm{~V}_{\mathrm{p}-\mathrm{p}}(0.1 \mathrm{~Hz}$ to 10 Hz$)$
- Low input bias current - 3.0 nA
- Low power consumption - 140 mW

Description

The RC4277 provides the highest precision available in a dual bipolar operational amplifier. A monolithic dual version of the RC4077, the RC4277 is designed to replace OP-07 and OP-77 type amplifiers in applications requiring high PC board layout density. The RC4277 has a well-balanced, mutually supporting set of input specifications. Low VOS, low IB, high open-loop gain, and excellent matching characteristics combine to raise the performance level of many instrumentation, low-level signal conditioning, and data conversion applications. PSRR, CMRR, VOS drift, and noise levels also support high precision operation.

The high performance of the RC4277 results from two innovative and unconventional manufacturing steps, plus careful circuit layout and design. The key steps are SiCr thin-film resistor deposition and post-package trimming of the input offset voltage characteristic. The low $75 \mu \mathrm{~V}$ max VOS specification is maintained in high-volume production by way of the post-package trim procedure, where internal resistors are trimmed through the device input leads at the final test operation. Devices retain this low offset through the stability and accuracy of the trimmed thin-film resistors.

The RC4277 is available in 8 -lead plastic and ceramic DIPs.

Block Diagram

Absolute Maximum Ratings

(beyond which the device may be damaged) ${ }^{1}$

Parameter		Min	Typ	Max	Units
Supply Voltage				± 22	V
Input Voltage ${ }^{2}$				± 22	V
Differential Input Voltage				30	V
Internal Power Dissipation ${ }^{3}$				500	mW
$\mathrm{PDT}_{\mathrm{A}}<50^{\circ} \mathrm{C}$	PDIP			468	mW
	CerDIP			833	
Output Short Circuit Duration		Indefinite			
Junction Temperature	PDIP			125	${ }^{\circ} \mathrm{C}$
	CerDIP			175	
Storage Temperature		-65		150	${ }^{\circ} \mathrm{C}$
Operating Temperature	RV4277	-25		85	${ }^{\circ} \mathrm{C}$
	RC4277	0		70	
Lead Soldering Temperature (60 sec)				300	${ }^{\circ} \mathrm{C}$
For $\mathrm{T}_{\mathrm{A}}>50^{\circ} \mathrm{C}$ Derate at	PDIP		6.25		$\mathrm{mW} /{ }^{\circ} \mathrm{C}$
	CerDIP		8.33		

Notes:

1. Functional operation under any of these conditions is NOT implied.
2. For supply voltages less than $\pm 22 \mathrm{~V}$, the absolute maximum input voltage is equal to the supply voltage.
3. Observe package thermal characteristics.

Operating Conditions

Parameter			Min	Typ	Max	Units
OJC	Thermal resistance	CerDIP		45		${ }^{\circ} \mathrm{C} / \mathrm{W}$
OJA	Thermal resistance	PDIP		160		${ }^{\circ} \mathrm{C} / \mathrm{W}$
		CerDIP		150		${ }^{\circ} \mathrm{C} / \mathrm{W}$

Electrical Characteristics

$\left(\mathrm{VS}= \pm 15 \mathrm{~V}\right.$, and $\mathrm{TA}=+25^{\circ} \mathrm{C}$ unless otherwise noted)

Parameters	Test Conditions	Min	Typ	Max	Units
Input Offset Voltage ${ }^{3}$			30	75	$\mu \mathrm{V}$
Input Voltage Offset Match			25	150	$\mu \mathrm{V}$
Long Term Vos Stability ${ }^{1}$			0.3		$\mu \mathrm{V} / \mathrm{Mo}$
Input Offset Current			0.5	5.0	nA
Input Bias Current			± 0.5	± 5.0	nA
Input Noise Voltage	0.1 Hz to 10 Hz		0.35		$\mu \mathrm{V}$ p-p
Input Noise Voltage Density	$\mathrm{FO}=10 \mathrm{~Hz}$		10.3		$\frac{\mathrm{nV}}{\sqrt{\mathrm{~Hz}}}$
	Fo $=100 \mathrm{~Hz}$		10		
	FO $=1000 \mathrm{~Hz}$		9.6		
Input Noise Current Density	$\mathrm{FO}=10 \mathrm{~Hz}$		0.32		$\frac{\mathrm{pA}}{\sqrt{\mathrm{Hz}}}$
	FO $=100 \mathrm{~Hz}$		0.14		
	FO $=1000 \mathrm{~Hz}$		0.12		
Input Voltage Range ${ }^{2,4}$		± 11	± 14		V
Common Mode Rejection Ratio	V CM $= \pm 11 \mathrm{~V}$	110	132		dB
Power Supply Rejection Ratio	$\mathrm{VS}= \pm 4 \mathrm{~V}$ to $\pm 16.5 \mathrm{~V}$	110	132		dB
Large Signal Voltage Gain	$\mathrm{RL} \geq 2 \mathrm{k} \Omega$, VOUT $= \pm 10 \mathrm{~V}$	1300	350		V/mV
Output Voltage Swing	$\mathrm{RL} \geq 10 \mathrm{k} \Omega$	± 12.5	± 13		V
	$\mathrm{R}_{\mathrm{L}} \geq 2 \mathrm{k} \Omega$	± 12	± 12.8		
	$R_{L} \geq 1 \mathrm{k} \Omega$	± 11	± 12		
Slew Rate	$R \mathrm{~L} \geq 2 \mathrm{k} \Omega$	0.1	0.3		$\mathrm{V} / \mu \mathrm{s}$
Closed Loop Bandwidth	AVCL $=+1.0$		0.8		MHz
Open Loop Output Resistance	VOUT $=0$, IOUT $=0$		60		Ω
Power Consumption	V S $= \pm 15 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=\infty$		60	100	mW
Crosstalk		126	155		dB

Notes:

1. Long Term Input Offset Voltage Stability refers to the averaged trend line of VOS vs. Time over extended periods after the first 30 days of operation. Excluding the initial hour of operation, changes in VOS during the first 30 operating days are typically $2.5 \mu \mathrm{~V}$.
2. Guaranteed by design.
3. Input Offset Voltage measurements are performed by automated test equipment approximately 0.5 seconds after application of power.
4. The input protection diodes do not allow the device to be removed or inserted into the circuit without first removing power.

Electrical Characteristics

$\left(\mathrm{VS}= \pm 15 \mathrm{~V}, 0^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+70^{\circ} \mathrm{C}\right.$ unless otherwise noted)

Parameters	Test Conditions	Min	Typ	Max	Units
Input Offset Voltage	$0^{\circ} \mathrm{C} \leq \mathrm{T}^{\prime} \leq+70^{\circ} \mathrm{C}$		50	120	$\mu \mathrm{V}$
	$-25^{\circ} \mathrm{C} \leq \mathrm{T} \mathrm{A} \leq+85^{\circ} \mathrm{C}$		50	135	
Average Input Offset Voltage Drift ${ }^{2}$			0.3	1.0	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
Input Offset Current			1.5	5.0	nA
Input Bias Current			± 1.5	± 5.0	nA
Input Voltage Range		± 10	± 13.5		V
Common Mode Rejection Ratio	$\mathrm{VCM}= \pm 10 \mathrm{~V}$	110	124		dB
Power Supply Rejection Ratio	$\mathrm{VS}= \pm 4 \mathrm{~V}$ to $\pm 16.5 \mathrm{~V}$	110	124		dB
Large Signal Voltage Gain	$\mathrm{RL}>2 \mathrm{k} \Omega$, V $\mathrm{OUT}= \pm 10 \mathrm{~V}$	1300	3000		V / mV
Output Voltage Swing	$\mathrm{RL}_{\mathrm{L}}>2 \mathrm{k} \Omega$	± 11	± 12.6		V
Power Consumption	$R \mathrm{~L}=\infty$		70	120	mW

Notes:

1. Input offset voltage measurements are performed by automated test equipment approximately 0.5 seconds after application of power.
2. This parameter is tested on a sample basis only.

Typical Applications

Figure 1. Adjustment-Free Precision Summing Amplifier

Figure 2. High Stability Thermocouple Amplifier

Typical Applications (continued)

Figure 3. Precision Absolute Value Circuit

Note: This circuit can tolerate input voltages that exceed the 4277's supply voltage rating as long as the slew rate do not exceed the op amp's slew rate.

Figure 4. High Voltage Differential Amplifier

Figure 5. Polarity Changing Gain Controlled Amplifier

Typical Applications (continued)

Figure 7. Differential Input Current Source

Figure 8. High Input Impedance Subtractor

Typical Applications (continued)

Figure 9. Difference Amplifier with Linear Gain Control

Figure 10. Three Op Amp Instrumentation Amplifier with Driven Shield

RM4277 SPICE Macro Model

This circuit models AC and DC characteristics including slew rate, bandwidth, VOS, IB, IOS, CMRR, output voltage
range, and gain. The circuit produces typical values for these parameters.

Mechanical Dimensions

8-Lead Ceramic DIP Package

Symbol	Inches		Millimeters		Notes
	Min.	Max.	Min.	Max.	
A	-	.200	-	5.08	
b1	.014	.023	.36	.58	8
b2	.045	.065	1.14	1.65	2,8
c1	.008	.015	.20	.38	8
D	-	.405	-	10.29	4
E	.220	.310	5.59	7.87	4
e	.100 BSC		2.54 BSC		5,9
eA	300 BSC		7.62 BSC		7
L	.125	.200	3.18	5.08	
Q	.015	.060	.38	1.52	3
s1	.005	-	.13	-	6
α	90°	105°	90°	105°	

Notes:

1. Index area: a notch or a pin one identification mark shall be located adjacent to pin one. The manufacturer's identification shall not be used as pin one identification mark.
2. The minimum limit for dimension "b2" may be . 023 (.58 mm) for leads number 1, 4, 5 and 8 only.
3. Dimension "Q" shall be measured from the seating plane to the base plane.
4. This dimension allows for off-center lid, meniscus and glass overrun.
5. The basic pin spacing is $.100(2.54 \mathrm{~mm})$ between centerlines. Each pin centerline shall be located within $\pm .010(.25 \mathrm{~mm})$ of its exact longitudinal position relative to pins 1 and 8 .
6. Applies to all four corners (leads number $1,4,5$, and 8).
7. "eA" shall be measured at the center of the lead bends or at the centerline of the leads when " α " is 90°.
8. All leads - Increase maximum limit by $.003(.08 \mathrm{~mm})$ measured at the center of the flat, when lead finish applied.
9. Six spaces.

Mechanical Dimensions (continued)

8-Lead Plastic DIP Package

Symbol	Inches		Millimeters		Notes
	Min.	Max.	Min.	Max.	
A	-	.210	-	5.33	
A1	.015	-	.38	-	
A2	.115	.195	2.93	4.95	
B	.014	.022	.36	.56	
B1	.045	.070	1.14	1.78	
C	.008	.015	.20	.38	4
D	.348	.430	8.84	10.92	2
D1	.005	-	.13	-	
E	.300	.325	7.62	8.26	
E1	.240	.280	6.10	7.11	2
e	.100 BSC	2.54 BSC			
eB	-	.430	-	10.92	
L	.115	.160	2.92	4.06	
N	8°				

Notes:

1. Dimensioning and tolerancing per ANSI Y14.5M-1982.
2. "D" and "E1" do not include mold flashing. Mold flash or protrusions shall not exceed .010 inch (0.25 mm).
3. Terminal numbers are for reference only.
4. "C" dimension does not include solder finish thickness.
5. Symbol " N " is the maximum number of terminals.

Ordering Information

Product Number	Temperature Range	Screening	Package
RC4277FN	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	Commercial	8 Pin Plastic DIP
RV4277FD	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	Commercial	8 Pin Ceramic DIP

The information contained in this data sheet has been carefully compiled; however, it shall not by implication or otherwise become part of the terms and conditions of any subsequent sale. Raytheon's liability shall be determined solely by its standard terms and conditions of sale. No representation as to application or use or that the circuits are either licensed or free from patent infringement is intended or implied. Raytheon reserves the right to change the circuitry and any other data at any time without notice and assumes no liability for errors.

LIFE SUPPORT POLICY:

Raytheon's products are not designed for use in life support applications, wherein a failure or malfunction of the component can reasonably be expected to result in personal injury. The user of Raytheon components in life support applications assumes all risk of such use and indemnifies Raytheon Company against all damages.

Raytheon Electronics
Semiconductor Division
350 Ellis Street
Mountain View CA 94043
4159689211
FAX 4159667742

